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Abstract

The transient hydrodynamics behavior of the non-Newtonian fluid flow in horizontal parallel-plate channels filled

with porous medium is investigated numerically. The role of the macroscopic local inertial term in the porous domain

momentum equation is studied. It is found that the macroscopic local inertial term has insignificant effect on the

channel hydrodynamics behavior for all non-Newtonian fluids having power law index less than 0.5 and over the entire

range of Darcy and Forchheimer numbers. However, the macroscopic local inertial term has significant effect when the

power law index is greater than 1 over a wide range of Darcy and Forchheimer numbers especially for relatively high

values of Darcy and low values of Forchheimer numbers. It is found that the effect of the macroscopic local inertial

term is very sensitive to the Forchheimer number at high values of Darcy numbers and power law index. Also, there is

an upper limit for n beyond which changing the power law index has insignificant effect on the local inertial term.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow of non-Newtonian fluids through a porous

medium is a topic of special interest in many engineering

applications. Examples of these applications are filtra-

tion processes, biomechanics, packed bed reactors,

geothermal engineering, insulation system, ceramic

processing, enhanced oil recovery, chromatography and

many others [1,2].

The literature shows that several investigators have

studied the characteristics of the hydrodynamics as well

as the thermal behavior of non-Newtonian flows

through porous channels. Examples of these investiga-

tions may be found in [1–6].

In the present work, the transient hydrodynamics

characteristics of a non-Newtonian fluid flow inside
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horizontal parallel-plate channels filled with porous

medium is investigated numerically. The unsteadiness in

the fluid flow is due to a suddenly imposed pressure

gradient which drives the flow.

The main goal of the present study is to investigate

the role of the macroscopic local inertial term in the

porous domain momentum equation and its effect on the

hydrodynamics behavior of a non-Newtonian fluid flow

in porous channels. In the literature about fluid flow in

porous domains, it has been realized that the macro-

scopic local inertial term is usually small compared to

the microscopic Darcy drag term, and hence can be

neglected [7–15]. In most practical situations in porous

domain applications, the velocity responds to an im-

posed pressure change within a second or less. The

macroscopic local inertial term may be important if an

oscillatory pressure gradient is imposed or if the porous

domain is of large void fraction [7,11,12,15]. The present

investigations focus on the operating and geometrical

parameters within which the macroscopic local inertial

term may be significant. Such an investigation for a
ed.
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Nomenclature

C coefficient in the modified dimensionless

Forchheimer coefficient

Da� Darcy number, K�=�nLnþ1

K intrinsic permeability of the porous medium

K� modified permeability of the porous medium

for flow of power law fluids

2L channel width

n power law index

p pressure

t time

t0 reference time, q�n�1Lnþ1=l�un�1
0

tt transient time

u axial velocity

u0 reference axial velocity,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�dp=dxÞ�nðLnþ1=l�Þn

p

U dimensionless axial velocity, u=u0
x axial coordinate

y transverse coordinate

Y dimensionless transverse coordinate, y=L

Greek symbols

C dimensionless Forchheimer coefficient,

qC�nLnþ1u2�n
0 =l�

ffiffiffiffi
K

p

� porosity of the porous domain

l dynamic viscosity

l� consistency index of a power law fluid

m kinematics viscosity

q fluid density

s dimensionless time, t=t0
st dimensionless transient time, tt=t0
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non-Newtonian fluid flow in porous domain is not

available yet in the literature. Also, the effect of these

geometrical and operating conditions on the transient

time, which is defined as the time required by the flow to

attain steady state behavior, need to be investigated.

In this study, the Darcy–Brinkman–Forchheimer

model is adopted to describe the non-Newtonian fluid

flow hydrodynamic behavior. The inclusion of the

Brinkman term is justified when the porous domain has

large void fraction, i.e., � > 0:6 [14]. The non-Newtonian

fluid is assumed to obey the power law constitution.
2. Mathematical formulation

Consider an unsteady laminar forced non-Newtonian

fluid flow into a horizontal parallel-plate channel filled

with porous medium. The unsteadiness in the fluid flow

is due to a suddenly imposed pressure gradient which

drives the flow. The fluid is assumed to be non-Newto-

nian which obeys the power law with uniform properties

and the porous medium is isotropic and homogeneous.

The flow is assumed to be hydrodynamically fully de-

veloped which velocity does not depend on the axial

direction x of the channel. As a result of the continuity

equation, the flow is a unidirectional one and it is ex-

pressed in terms of the axial velocity u alone. Also, the

pressure gradient is assumed to be constant. Using the

dimensionless parameters given in the nomenclature,

the equation of motion is given as [2,4,15]:

oU
os

¼ 1þ o

oY
oU
oY

����
����
n�1

oU
oY

" #
� 1

Da�
Un � CU 2 ð1Þ
where

Da� ¼ K�

�nLnþ1
; C ¼ C�nLnþ1u2�n

0 q

l�
ffiffiffiffi
K

p

Eq. (1) has the following initial and boundary condi-

tions:

Uð0; Y Þ ¼ 0 ð2Þ

Uðs;�1Þ ¼ Uðs; 1Þ ¼ 0 ð3Þ

In Eq. (1), the acceleration coefficient tensor is assumed

to be 1=�n [2].
3. Numerical method

The one-dimensional unsteady governing equation is

solved numerically using the finite-volume approach

[16]. To achieve diagonal dominance, the source term Su
is linearized such as its Sp coefficient is negative. The

source term Su represents the Darcy term, Forchheimer

term and the dimensionless pressure gradient (¼ 1), and

it is given as:

Su ¼ SpU þ Sc ¼ 1� 1

Da�
Un � CU 2

As a result, the coefficients Sp and Sc are given as:

Sp ¼ � 1

Da�
Un�1 � CU ; Sc ¼ 1

Such representation satisfies the boundedness condition,

which considered a sufficient condition for a conver-

gence. The central differencing of the diffusion term,

which refers to the Brinkman term, assures the conser-
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vativeness property of the scheme. Eq. (1) is discretized

with an implicit Euler time scheme. The resulting system

of algebraic equations must be solved at each time level.

The time marching procedure starts with a given initial

field of velocity. The accuracy of the scheme is only first-

order in time, thus small dimensionless time steps are

needed to ensure the accuracy of results. The implicit

scheme is considered robust and unconditionally stable.

The above discretization procedure led to a tri-diagonal

system. Thomas tri-diagonal matrix algorithm (TDMA)

is used for solution. This method considered inexpensive

and requires a minimum amount of storage.

A uniform grid is used for the dimensionless spatial

coordinate; the adequacy of the grid is verified by

comparing the results of different choices, 50 grids

(nodes) are found to be satisfactory. The dimensionless

time step is used based on number of refinements to

ensure that the results are independent of such choices.

The tests are performed for several combinations of Da�,
C and n. Values of dimensionless time steps from 10�3 to

10�5 are considered. Dimensionless time steps of 10�4

are found adequate for this study. The numerical itera-

tion is repeated until the rate of change of the maximum

velocity reaches a tolerance of 10�4.
4. Results and discussion

To verify the validity of the adopted numerical

scheme, the steady state version of Eqs. (1)–(3), for

Newtonian fluid (n ¼ 1) and with negligible microscopic
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n ¼ 1.
inertial term (C ¼ 0), is solved analytically. The analyt-

ical solution under these assumptions is given as:

UðY Þ ¼ Da� 1

2
4 �

cosh Yffiffiffiffiffiffi
Da�

p
� 	

cosh 1ffiffiffiffiffiffi
Da�

p
� 	

3
5 ð4Þ

Fig. 1 shows a comparison between the steady state

numerical and analytical velocity profiles for C ¼ 0 and

n ¼ 1. As clear from this figure, the results are in ex-

cellent agreement. Another verification is made by ob-

taining the analytical transient solution for Eqs. (1)–(3)

with n ¼ 1, C ¼ 0 and Da� ! 1. This analytical solu-

tion is given as:

Uðs; Y Þ ¼ 1

2
ð1� Y 2Þ �

X1
n¼1

2 sinðbnÞ
b3
n

e�b2ns cosðbnY Þ ð5Þ

where

bn ¼ ð2n� 1Þp
2

Also, the numerical results are found to be in excellent

agreement with the analytical ones as shown in Fig. 2.

In the following figures, the focus is on the effect of

different parameters, such as Da�, C and n, on the

transient time st. The transient time is defined as the

time required by the channel to attain approximately

the steady state velocity distribution. It is clear that this

time depends on the location Y within the channel.

However, it is noticed that the channel center, which has

the maximum velocity, also has the longest transient

time st. Also, it is noticed that the transient time is more
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sensitive to the effect of other parameters at this location

as compared to its sensitivity at other locations. For

these reasons, the transient time at the channel center is

selected as an indicator for the channel transient time.

The transient time is estimated by marching in the time

domain and searching for the time at which any further

marching in time does not cause any significant change

in the dimensionless velocity at the channel center. The

change in this velocity is considered insignificant if the

percentage change, defined as the difference between
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Fig. 3. Velocity spatial distribution at different t
the new and the old velocities over the new one, is less

than 1%.

Figs. 3 and 4 show samples for the transient spatial

velocity distribution at different times and for two power

law indices n. From these figures it is clear that the ve-

locity profiles have a slug flattened form especially far

from the wall. This is a typical behavior for the spatial

velocity distribution in porous domains. This is due to

the thin boundary layer encountered in porous domains.

As a result, there are large gradients in the velocity
5 0.6 0.7 0.8 0.9 1

 direction, Y

imes s. Da� ¼ 1
 10�2, C ¼ 10:0, n ¼ 0:5.
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M.A. Al-Nimr, T.K. Aldoss / International Journal of Heat and Mass Transfer 47 (2004) 125–133 129
profile near the wall and this explains why early inves-

tigations adopted Darcy model which assumes that there

is a slip, sudden change, in velocity near boundaries. It is

clear from Figs. 3 and 4 that lower n has flatter profile

than higher n. Also, it is clear from these two figures that

fluids with higher n has higher velocity than that of

lower n. This may be explained by writing Darcy version

of Eq. (1) under steady state conditions. This Darcy

version is obtained by dropping Brinkman and Forch-

heimer terms, and it is given as:
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1� 1

Da�
Un ¼ 0

which is solved to yield:

U ¼ ðDa�Þ1=n

Now, with the notation that porous medium always has

Da� < 1, it is clear that fluids having higher n attain

larger velocities than fluids having lower n.
Figs. 5–7 show the effect of Da� on the transient time

st at different microscopic inertial numbers C and
-3
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different power law indices n. It is clear that porous

domains of low Darcy numbers (<10�3) have very small

transient times for all ranges of the microscopic inertial

numbers C. This implies that the effect of the macro-

scopic local inertial term may be neglected in porous

domains having Da� < 10�3. In the literature [7,8,11–

13], it is found that the macroscopic local inertial term is

of insignificant effects on the hydrodynamics behavior of

Newtonian fluids flow in porous domains having rela-

tively small values of Da numbers. Figs. 5–7 show that
the macroscopic local inertial term has more significant

effect on the channel hydrodynamics behavior in the

case of non-Newtonian fluids having n > 1. The focus

on this behavior will be revisited later again in Figs. 8

and 9. Channels having small Da� numbers contain less

amount of fluid due to its small void ratio �. The per-

meability of the porous domain is proportional to its

void ratio � and as a result, the porous domain fluid

content is proportional to Darcy number. As the mass of

the fluid content in the porous domain decreases its local
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inertia decreases. As a result, shorter time is required by

the fluid to attain the steady state behavior.

Figs. 5–7 show that the effect of the macroscopic

local inertial term is more significant at small values of

the microscopic inertial numbers C. As C increases, the

effect of the macroscopic local inertial term becomes

insignificant as compared to the effect of the microscopic

Forchheimer inertial term. It is clear from Eq. (1) that

the microscopic friction (Darcy) term, the macroscopic

friction (Brinkman) term and the microscopic (Forch-

heimer) inertial term resist the pressure gradient driving

force and as a result resist the acceleration in the fluid

flow. As these three resistances increase, it will be much

easier for the fluid to attain the steady state behavior
because the steady velocity profile will have less values.

As a result, shorter time is required by the channel to

attain the steady hydrodynamics behavior. As an ex-

ample, imagine the situation in which there is no resis-

tance against the fluid flow. This reduces Eq. (1) to

oU
os

¼ 1 ð6Þ

which, with Uð0Þ ¼ 0, gives the following solution

U ¼ s ð7Þ

This implies that the channel velocity increases and in-

creases as time proceeds without any upper limit for this
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increase and hence, the transient time is of infinite value.

The appearance of the microscopic (Forchheimer) iner-

tial resistance CU 2, the microscopic frictional (Darcy)

resistance 1
Da� U

n and the macroscopic frictional (Brink-

man) resistance o
oY ½j oUoY j

n�1 oU
oY 
 shortens the time required

by the channel to attain steady state behavior by re-

ducing the upper limit of the steady velocity profile.

Also, it is clear from Figs. 5–7 that the effect of Da�

on the channel transient time is more significant at small

values of C and large values of n. The effect of C on the

transient time st is more significant at large values of Da�

and n. Large values of Da� and n implies that the porous

domain contains more mass of thick (viscous) fluid, and

the fluid transient time is more sensitive to the change in

its microscopic inertial term.

Figs. 8 and 9 show the effect of the non-Newtonian

power law index n on the channel transient time st at
different values of Da� and C. The figures reveal that the
macroscopic local inertial term has significant effect on

the channel hydrodynamics behavior for relatively large

values of n even when Da� has relatively small values. As

n increases, the fluid becomes thicker, i.e., more viscous.

This implies that longer time is required by the fluid to

attain the steady state behavior due to its slow response

to the pressure gradient driving force. Also, it is clear

from these figures that there is an upper limit for n be-

yond which changing n has insignificant effect on the

channel transient time. This asymptotic behavior in st
with n becomes more clear at large values of Da� and

small values of C. The channel transient behavior is very
sensitive to the change in n for n < 1. especially in

channels having larger Da�.
The same figures show that the macroscopic local

inertial term has insignificant effect on the channel hy-

drodynamics behavior for all non-Newtonian fluids

having n < 0:5 over the entire ranges of Da� and C. This
is also true for non-Newtonian fluids, having n < 0:5,
flow through clear non-porous domains. This is con-

cluded from the curves of Figs. 8 and 9 which have

Da� > 0:1. It is known in the porous domain literature

that as Da� increases, the porous domain approaches the

clear non-porous one and porous domains having

Da� > 0:1 are considered anon-porous or clear ones

[2,15]. Fluids having n < 0:5 are thin fluids having low

viscosity and the response of these fluids to the imposed

pressure gradient is very fast. As a result, the time re-

quired by these fluids to attain the steady behavior is

very short.
5. Conclusion

Numerical solutions are obtained for the transient

fluid flow problem in horizontal parallel-plate channels

filled with porous medium under the effect of a suddenly
imposed pressure gradient. The effect of the porous

medium macroscopic local inertial term is investigated.

It is found that the effect of the macroscopic local in-

ertial term may be neglected in porous domains having

Da < 10�3 over the entire ranges of power law indices n
and microscopic inertial numbers C. The macroscopic

local inertial term has more significant effect on the

channel hydrodynamics behavior in the case of non-

Newtonian fluids having n > 1 and small values of C.
Also, it is found that the effect of Da� on the channel

transient time is more significant at small values of C
and large values of n. The effect of C on the transient

time st is more significant at large values of Da� and n. It
is noticed that there is an upper limit for n beyond which

changing n has insignificant effect on the channel tran-

sient time. It is concluded that the macroscopic local

inertial term has insignificant effect on the channel hy-

drodynamics behavior for all non-Newtonian fluids

having n < 0:5 and over the entire ranges of Da� and C.
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